Diffusive Approximation of a Time-Fractional Burger's Equation in Nonlinear Acoustics
نویسندگان
چکیده
A fractional time derivative is introduced into Burger’s equation to model losses of nonlinear waves. This term amounts to a time convolution product, which greatly penalizes the numerical modeling. A diffusive representation of the fractional derivative is adopted here, replacing this nonlocal operator by a continuum of memory variables that satisfy local-in-time ordinary differential equations. Then a quadrature formula yields a system of local partial differential equations, well-suited to numerical integration. The determination of the quadrature coefficients is crucial to ensure both the well-posedness of the system and the computational efficiency of the diffusive approximation. For this purpose, optimization with constraint is shown to be a very efficient strategy. Strang splitting is used to solve successively the hyperbolic part by a shock-capturing scheme, and the diffusive part exactly. Numerical experiments are proposed to assess the efficiency of the numerical modeling, and to illustrate the effect of the fractional attenuation on the wave propagation.
منابع مشابه
A fractional Burgers equation arising in nonlinear acoustics: theory and numerics
The study of a fractional Burgers equation arising in nonlinear acoustics is presented. The motivation comes from an elementary model of shock waves in brass wind instruments, that proves useful in musical acoustics. Such a model results from the coupling of a conservative nonlinear system with a dissipative term; here the dissipation is represented by a fractional derivative in time, for which...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملA Numerical Approach for Fractional Optimal Control Problems by Using Ritz Approximation
In this article, Ritz approximation have been employed to obtain the numerical solutions of a class of the fractional optimal control problems based on the Caputo fractional derivative. Using polynomial basis functions, we obtain a system of nonlinear algebraic equations. This nonlinear system of equation is solved and the coefficients of basis polynomial are derived. The convergence of the num...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 76 شماره
صفحات -
تاریخ انتشار 2016